Banyak siswa-siswi saya yang bertanya: "Bapak, Soal dan Pembahasan matematika dasar UM-UGM ada tidak? Saya kan jurusan IPS..". Betul, untuk yang jurusan IPS sangat perlu pembahasan matematika dasarnya. Untuk itu saya pilihlah judul postingan ini: Pembahasan Matematika Dasar UM-UGM 2016 Kode 371.
Matematika Dasar UM-UGM 2016 No. 1
Jika $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$ sanggup dinyatakan sebagai $\frac{a\sqrt{2}+b\sqrt{3}+c\sqrt{30}}{12}$, maka $a+b+c$ = …
A. 0 B. 1 C. 2 D. 3 E. 4
Pembahasan:
$\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$
$=\frac{1}{(\sqrt{2}+\sqrt{3})+\sqrt{5}}\times \frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{(\sqrt{2}+\sqrt{3})-\sqrt{5}}$
$=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{{{(\sqrt{2}+\sqrt{3})}^{2}}-{{(\sqrt{5})}^{2}}}$
$=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2+2\sqrt{6}+3-5}$
$=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2\sqrt{6}}\times \frac{\sqrt{6}}{\sqrt{6}}$
$=\frac{\sqrt{12}+\sqrt{18}-\sqrt{30}}{2.6}$
$=\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}$
$=\frac{3\sqrt{2}+2\sqrt{3}-\sqrt{30}}{12}$
$=\frac{a\sqrt{2}+b\sqrt{3}+c\sqrt{30}}{12}$
Jadi, $a=3$, $b=2$, $c=-1$ maka: $a+b+c$ = 3 + 2 + (-1) = 4.
Kunci: E
Matematika Dasar UM-UGM 2016 No. 2
Jika ${{a}^{x}}={{b}^{y}}={{c}^{z}}$ dan ${{b}^{2}}=ac$ , maka $x$ = …
A. $\frac{2yz}{y+z}$
B. $\frac{2yz}{2z-y}$
C. $\frac{2yz}{2y-z}$
D. $\frac{yz}{2y-z}$
E. $\frac{yz}{2z-y}$
Pembahasan:
Misalkan: ${{a}^{x}}={{b}^{y}}={{c}^{z}}=p$, maka $a={{p}^{\frac{1}{x}}}$, $b={{p}^{\frac{1}{y}}}$, dan $a={{p}^{\frac{1}{z}}}$ sehingga diperoleh:
${{b}^{2}}=ac$
${{p}^{\frac{2}{y}}}={{p}^{\frac{1}{x}}}.{{p}^{\frac{1}{z}}}$
${{p}^{\frac{2}{y}}}={{p}^{\frac{1}{x}+\frac{1}{z}}}$
$\frac{2}{y}=\frac{1}{x}+\frac{1}{z}$
$\frac{2}{y}-\frac{1}{z}=\frac{1}{x}$
$\frac{2z-y}{yz}=\frac{1}{x}$
$\frac{yz}{2z-y}=x$
Kunci: E
Matematika DASAR UM-UGM 2016 No. 4
Diketahui parabola $y={{x}^{2}}-4x+6$ dipotong oleh garis $l$ di dua titik berbeda. Jika garis $l$ melalui titik $(3,2)$ dan memiliki gradien $m$, maka …
A. $-4 < m < 0$
B. $0 < m < 4$
C. $m < 0$ atau $m > 4$
D. $m < 1$ atau $m > 1$
E. $m < -4$ atau $m > 1$
Pembahasan:
Persamaan garis $l$ melalui titik $(3,2)$dan bergradien $m$ adalah:
$y-{{y}_{1}}=m(x-{{x}_{1}})$
$y-2=m(x-3)$
$y=mx-3n+2$
Memotong parabola $y={{x}^{2}}-4x+6$, maka:
$y=y$
${{x}^{2}}-4x+6=mx-3m+2$
${{x}^{2}}-(4+m)x+3m+4=0$
Syarat memotong D > 0, maka:
$D={{b}^{2}}-4ac > 0$
${{[-(4+m)]}^{2}}-4.1.(3m+4) > 0$
$16+8m+{{m}^{2}}-12m-16 > 0$
${{m}^{2}}-4m > 0$
$m(m-4) > 0$
$m=0$ atau $m=4$
Dengan garis bilangan diperoleh:
$m < 0$ atau $m > 4$
Kunci: C
Matematika DASAR UM-UGM 2016 No. 5
Jika $(x,y)$ yakni salah satu solusi sistem persamaan ${{x}^{2}}+{{y}^{2}}-16x+39=0$, ${{x}^{2}}-{{y}^{2}}-9=0$ maka $x+y$ = ….
A. 9 B. 6 C. 5 D. -1 E. -3
Pembahasan:
${{x}^{2}}+{{y}^{2}}-16x+39=0$
${{x}^{2}}-{{y}^{2}}-9=0$
--------------------------- (+)
$2{{x}^{2}}-16x+30=0$
${{x}^{2}}-8x+15=0$
$(x-3)(x-5)=0$
$x=3$ atau $x=5$
${{x}^{2}}-{{y}^{2}}-9=0$
Jika $x=3$ maka:
${{3}^{2}}-{{y}^{2}}-9=0\Leftrightarrow y=0$
Jika $x=5$ maka:
${{5}^{2}}-{{y}^{2}}-9=0$
$16={{y}^{2}}\Leftrightarrow y=\pm 4$
Solusi dari persamaan tersebut adalah:
$(3,0)\Rightarrow x+y=3$
$(5,4)\Rightarrow x+y=9$
$(5,-4)\Rightarrow x+y=1$
Kunci: A
Matematika DASAR UM-UGM 2016 No. 6
Semua nilai $x$ yang memenuhi $\frac{1+\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-x} > 0$ yakni …
A. $-2\le x < 0$ atau $1 < x\le 2$
B. $-2 < x < 0$ atau $1 < x < 2$
C. $-2\le x < -1$ atau $0 < x\le 2$
D. $x < 0$ atau $x > 1$
E. $0 < x < 1$
Pembahasan:
Syarat semoga $\sqrt{4-{{x}^{2}}}$ terdefinisi adalah:
$4-{{x}^{2}}\ge 0$
${{x}^{2}}-4\le 0$
$(x+2)(x-2)\le 0$
$x=-2$ atau $x=2$ (pembuat nol), maka:
$-2\le x\le 2$ … (1)
$\frac{1+\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-x} > 0$, alasannya $1+\sqrt{4-{{x}^{2}}} > 0$, maka:
${{x}^{2}}-x > 0$
$x(x-1) > 0$
$x=0$ atau $x=1$ (pembuat nol), maka:
$x < 0$ atau $x > 1$ … (2)
HP yakni irisan (1) dan (2)
$-2\le x < 0$ atau $1 < x\le 2$
Kunci: A
A. $y\ge 0$, $2y-x\le 1$, $x+y\le 4$
B. $y\ge 0$, $2y-x\le 2$, $x+y\le 4$
C. $y\ge 0$, $2y-x\ge 2$, $x+y\le 4$
D. $y\ge 0$, $2y+x\le 2$, $x+y\ge 4$
E. $y\ge 0$, $2y+x\le 2$, $x+y\le 4$
Pembahasan:
Daerah penyelesaian terletak di atas sumbu X, maka $y\ge 0$.
Daerah penyelesaian terletak di sebelah kanan garis yang melalui titik (0,1) dan (-2,0) maka: $x-2y\ge 1.(-2)$ atau $2y-x\le 2$.
Daerah penyelesaian terletak di sebelah kiri garis yang melalui titik (0,4) dan (4,0) maka: $4x+4y\le 4.4$ atau $x+y\le 4$.
Kunci: B
Matematika DASAR UM-UGM 2016 No. 9
Diketahui barisan geometri dengan jumlah suku ke-1 dan ke-3 yakni 100 dan jumlah suku ke-2 dan ke-4 yakni 75, maka suku pertama barisan tersebut yakni …
A. 24 B. 27 C. 36 D. 48 E. 64
Pembahasan:
Barisan geometri: ${{U}_{n}}=a{{r}^{n-1}}$
$\frac{{{U}_{2}}+{{U}_{4}}}{{{U}_{1}}+{{U}_{3}}}=\frac{75}{100}$
$\frac{ar+a{{r}^{3}}}{a+a{{r}^{2}}}=\frac{3}{4}$
$\frac{r(a+a{{r}^{2}})}{(a+a{{r}^{2}})}=\frac{3}{4}\Leftrightarrow r=\frac{3}{4}$
${{U}_{1}}+{{U}_{3}}=100$
$a+a{{r}^{2}}=100$
$a+a{{\left( \frac{3}{4} \right)}^{2}}=100$
$a+\frac{9a}{16}=100$
$\frac{25a}{16}=100$
$a=64$
Kunci: E
Matematika DASAR UM-UGM 2016 No. 10
Jika A memenuhi $\left[ \begin{matrix} 2 & 1 \\ 1 & 1 \\ \end{matrix} \right]A+\left[ \begin{matrix} -1 & -2 \\ 0 & -1 \\ \end{matrix} \right]=\left[ \begin{matrix} -1 & 0 \\ 1 & 1 \\ \end{matrix} \right]$, maka det(A) = …
A. 0 B. $-\frac{1}{2}$ C. $-1$ D. $-2$ E. $-3$
Pembahasan:
$\left[ \begin{matrix} 2 & 1 \\ 1 & 1 \\ \end{matrix} \right]A+\left[ \begin{matrix} -1 & -2 \\ 0 & -1 \\ \end{matrix} \right]=\left[ \begin{matrix} -1 & 0 \\ 1 & 1 \\ \end{matrix} \right]$
$\left[ \begin{matrix} 2 & 1 \\ 1 & 1 \\ \end{matrix} \right]A=\left[ \begin{matrix} -1 & 0 \\ 1 & 1 \\ \end{matrix} \right]-\left[ \begin{matrix} -1 & -2 \\ 0 & -1 \\ \end{matrix} \right]$
$\left[ \begin{matrix} 2 & 1 \\ 1 & 1 \\ \end{matrix} \right]A=\left[ \begin{matrix} 0 & 2 \\ 1 & 2 \\ \end{matrix} \right]$
$\left| \begin{matrix} 2 & 1 \\ 1 & 1 \\ \end{matrix} \right||A|=\left| \begin{matrix} 0 & 2 \\ 1 & 2 \\ \end{matrix} \right|$
$1.|A|=-2$
$|A|=-2$
Kunci: D
Matematika DASAR UM-UGM 2016 No. 11
Mimi mendapat nilai rata-rata 6 untuk 3 kali ulangan matematika, nilai rata-rata 7 untuk 3 kali ulangan Biologi dan nilai rata-rata 8 untuk 4 kali ulangan Bahasa Inggris, dan masih ada 5 ulangan lagi dari ketiga pelajaran tersebut yang akan diikuti oleh Mimi. Agar Mimi mendapat nilai rata-rata untuk tiga mata pelajaran minimal 7,2, maka Mimi harus mendapat nilai rata-rata 5 ulangan minimal …
A. 7,2 B. 7,3 C. 7,4 D. 7,5 E. 7,6
Pembahasan:
Misalkan: p = nilai rata-rata 5 ulangan terakhir, maka:
${{n}_{1}}.{{\bar{x}}_{1}}+{{n}_{2}}.{{\bar{x}}_{2}}+{{n}_{3}}.{{\bar{x}}_{3}}+{{n}_{4}}.{{\bar{x}}_{4}}\ge ({{n}_{1}}+{{n}_{2}}+{{n}_{3}}+{{n}_{4}}).{{\bar{x}}_{Total}}$
$6.3+7.3+8.4+5.p\ge (3+3+4+5).7,2$
$18+21+32+5p\ge 15\times 7,2$
$71+5p\ge 108$
$5p\ge 108-71$
$5p\ge 37$
$p\ge 7,4$
Kunci: C
A. $\frac{1-2\sqrt{3}}{2}$
B. $\frac{1-\sqrt{3}}{2}$
C. $\frac{2-\sqrt{3}}{2}$
D. $\frac{\sqrt{7}+\sqrt{3}}{2}$
E. $\frac{\sqrt{7}-\sqrt{3}}{2}$
Pembahasan:
${{\cos }^{2}}x=\sqrt{3}\sin x$, terlihat $\sin x$ harus positif, maka:
$1-{{\sin }^{2}}x=\sqrt{3}\sin x$
${{\sin }^{2}}x+\sqrt{3}\sin x-1=0$
Dengan rumus abc:
$\sin x=\frac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$
$\sin x=\frac{-\sqrt{3}+\sqrt{{{(\sqrt{3})}^{2}}-4.1.(-1)}}{2.1}$
$\sin x=\frac{-\sqrt{3}+\sqrt{7}}{2}=\frac{\sqrt{7}-\sqrt{3}}{2}$
Kunci: E
Matematika Dasar UM-UGM 2016 No. 1
Jika $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$ sanggup dinyatakan sebagai $\frac{a\sqrt{2}+b\sqrt{3}+c\sqrt{30}}{12}$, maka $a+b+c$ = …
A. 0 B. 1 C. 2 D. 3 E. 4
Pembahasan:
$\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$
$=\frac{1}{(\sqrt{2}+\sqrt{3})+\sqrt{5}}\times \frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{(\sqrt{2}+\sqrt{3})-\sqrt{5}}$
$=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{{{(\sqrt{2}+\sqrt{3})}^{2}}-{{(\sqrt{5})}^{2}}}$
$=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2+2\sqrt{6}+3-5}$
$=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2\sqrt{6}}\times \frac{\sqrt{6}}{\sqrt{6}}$
$=\frac{\sqrt{12}+\sqrt{18}-\sqrt{30}}{2.6}$
$=\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}$
$=\frac{3\sqrt{2}+2\sqrt{3}-\sqrt{30}}{12}$
$=\frac{a\sqrt{2}+b\sqrt{3}+c\sqrt{30}}{12}$
Jadi, $a=3$, $b=2$, $c=-1$ maka: $a+b+c$ = 3 + 2 + (-1) = 4.
Kunci: E
Matematika Dasar UM-UGM 2016 No. 2
Jika ${{a}^{x}}={{b}^{y}}={{c}^{z}}$ dan ${{b}^{2}}=ac$ , maka $x$ = …
A. $\frac{2yz}{y+z}$
B. $\frac{2yz}{2z-y}$
C. $\frac{2yz}{2y-z}$
D. $\frac{yz}{2y-z}$
E. $\frac{yz}{2z-y}$
Pembahasan:
Misalkan: ${{a}^{x}}={{b}^{y}}={{c}^{z}}=p$, maka $a={{p}^{\frac{1}{x}}}$, $b={{p}^{\frac{1}{y}}}$, dan $a={{p}^{\frac{1}{z}}}$ sehingga diperoleh:
${{b}^{2}}=ac$
${{p}^{\frac{2}{y}}}={{p}^{\frac{1}{x}}}.{{p}^{\frac{1}{z}}}$
${{p}^{\frac{2}{y}}}={{p}^{\frac{1}{x}+\frac{1}{z}}}$
$\frac{2}{y}=\frac{1}{x}+\frac{1}{z}$
$\frac{2}{y}-\frac{1}{z}=\frac{1}{x}$
$\frac{2z-y}{yz}=\frac{1}{x}$
$\frac{yz}{2z-y}=x$
Kunci: E
Matematika DASAR UM-UGM 2016 No. 3
Diketahui persamaan kuadrat:
${{x}^{2}}-2x-3=0$ … (1)
${{x}^{2}}-ax+b=0$ … (2)
Jika jumlah kedua akar persamaan (2) sama dengan tiga kali jumlah kedua akar persamaan (1) dan kuadrat selisih kedua akar persamaan (1) sama dengan kuadrat selisih kedua akar persamaan (2), maka $b$ = …
A. 4 B. 5 C. 6 D. 7 E. 8
Pembahasan:
Misal:
${{x}^{2}}-2x-3=0$ akar-akarnya ${{x}_{1}}$ dan ${{x}_{2}}$
${{x}^{2}}-ax+b=0$ akar-akarnya ${{x}_{3}}$ dan ${{x}_{4}}$
Jumlah kedua akar persamaan (2) sama dengan tiga kali jumlah kedua akar persamaan (1), maka:
${{x}_{3}}+{{x}_{4}}=3({{x}_{1}}+{{x}_{2}})$
$\frac{-(-a)}{1}=3.\frac{-(-2)}{1}\Leftrightarrow a=6$
Kuadrat selisih kedua akar persamaan (1) sama dengan kuadrat selisih kedua akar persamaan (2), maka:
${{({{x}_{1}}-{{x}_{2}})}^{2}}={{({{x}_{3}}-{{x}_{4}})}^{2}}$
$x_{1}^{2}+x_{2}^{2}-2{{x}_{1}}.{{x}_{2}}=x_{3}^{2}+x_{4}^{2}-2{{x}_{3}}.{{x}_{4}}$
${{({{x}_{1}}+{{x}_{2}})}^{2}}-4{{x}_{1}}.{{x}_{2}}={{({{x}_{3}}+{{x}_{4}})}^{2}}-4{{x}_{3}}.{{x}_{4}}$
${{(2)}^{2}}-4.(-3)={{(a)}^{2}}-4.b$
$16={{6}^{2}}-4.b$
$-20=-4.b\Leftrightarrow 5=b$
Kunci: B
Diketahui parabola $y={{x}^{2}}-4x+6$ dipotong oleh garis $l$ di dua titik berbeda. Jika garis $l$ melalui titik $(3,2)$ dan memiliki gradien $m$, maka …
A. $-4 < m < 0$
B. $0 < m < 4$
C. $m < 0$ atau $m > 4$
D. $m < 1$ atau $m > 1$
E. $m < -4$ atau $m > 1$
Pembahasan:
Persamaan garis $l$ melalui titik $(3,2)$dan bergradien $m$ adalah:
$y-{{y}_{1}}=m(x-{{x}_{1}})$
$y-2=m(x-3)$
$y=mx-3n+2$
Memotong parabola $y={{x}^{2}}-4x+6$, maka:
$y=y$
${{x}^{2}}-4x+6=mx-3m+2$
${{x}^{2}}-(4+m)x+3m+4=0$
Syarat memotong D > 0, maka:
$D={{b}^{2}}-4ac > 0$
${{[-(4+m)]}^{2}}-4.1.(3m+4) > 0$
$16+8m+{{m}^{2}}-12m-16 > 0$
${{m}^{2}}-4m > 0$
$m(m-4) > 0$
$m=0$ atau $m=4$
Dengan garis bilangan diperoleh:
$m < 0$ atau $m > 4$
Kunci: C
Jika $(x,y)$ yakni salah satu solusi sistem persamaan ${{x}^{2}}+{{y}^{2}}-16x+39=0$, ${{x}^{2}}-{{y}^{2}}-9=0$ maka $x+y$ = ….
A. 9 B. 6 C. 5 D. -1 E. -3
Pembahasan:
${{x}^{2}}+{{y}^{2}}-16x+39=0$
${{x}^{2}}-{{y}^{2}}-9=0$
--------------------------- (+)
$2{{x}^{2}}-16x+30=0$
${{x}^{2}}-8x+15=0$
$(x-3)(x-5)=0$
$x=3$ atau $x=5$
${{x}^{2}}-{{y}^{2}}-9=0$
Jika $x=3$ maka:
${{3}^{2}}-{{y}^{2}}-9=0\Leftrightarrow y=0$
Jika $x=5$ maka:
${{5}^{2}}-{{y}^{2}}-9=0$
$16={{y}^{2}}\Leftrightarrow y=\pm 4$
Solusi dari persamaan tersebut adalah:
$(3,0)\Rightarrow x+y=3$
$(5,4)\Rightarrow x+y=9$
$(5,-4)\Rightarrow x+y=1$
Kunci: A
Semua nilai $x$ yang memenuhi $\frac{1+\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-x} > 0$ yakni …
A. $-2\le x < 0$ atau $1 < x\le 2$
B. $-2 < x < 0$ atau $1 < x < 2$
C. $-2\le x < -1$ atau $0 < x\le 2$
D. $x < 0$ atau $x > 1$
E. $0 < x < 1$
Pembahasan:
Syarat semoga $\sqrt{4-{{x}^{2}}}$ terdefinisi adalah:
$4-{{x}^{2}}\ge 0$
${{x}^{2}}-4\le 0$
$(x+2)(x-2)\le 0$
$x=-2$ atau $x=2$ (pembuat nol), maka:
$-2\le x\le 2$ … (1)
$\frac{1+\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-x} > 0$, alasannya $1+\sqrt{4-{{x}^{2}}} > 0$, maka:
${{x}^{2}}-x > 0$
$x(x-1) > 0$
$x=0$ atau $x=1$ (pembuat nol), maka:
$x < 0$ atau $x > 1$ … (2)
HP yakni irisan (1) dan (2)
$-2\le x < 0$ atau $1 < x\le 2$
Kunci: A
Matematika DASAR UM-UGM 2016 No. 7
Pada gambar di bawah ini, kawasan yang diarsir memenuhi sistem pertidaksamaan …A. $y\ge 0$, $2y-x\le 1$, $x+y\le 4$
B. $y\ge 0$, $2y-x\le 2$, $x+y\le 4$
C. $y\ge 0$, $2y-x\ge 2$, $x+y\le 4$
D. $y\ge 0$, $2y+x\le 2$, $x+y\ge 4$
E. $y\ge 0$, $2y+x\le 2$, $x+y\le 4$
Pembahasan:
Daerah penyelesaian terletak di atas sumbu X, maka $y\ge 0$.
Daerah penyelesaian terletak di sebelah kanan garis yang melalui titik (0,1) dan (-2,0) maka: $x-2y\ge 1.(-2)$ atau $2y-x\le 2$.
Daerah penyelesaian terletak di sebelah kiri garis yang melalui titik (0,4) dan (4,0) maka: $4x+4y\le 4.4$ atau $x+y\le 4$.
Kunci: B
Matematika DASAR UM-UGM 2016 No. 8
Jika jumlah suku ke-1 dan ke-3 deret geometri yakni -5 dan suku ke-2 dikurangi suku ke-3 sama dengan 6, maka jumlah suku ke-3 dan suku ke-4 deret tersebut yakni …
A. -18 atau -12
B. -9 atau -4
C. 18 atau 12
D. 9 atau 4
E. 18 atau 4
Pembahasan:
Deret Geometri: ${{U}_{n}}=a{{r}^{n-1}}$
$\frac{{{U}_{3}}+{{U}_{1}}}{{{U}_{2}}-{{U}_{3}}}=\frac{-5}{6}$
$\frac{a{{r}^{2}}+a}{ar-a{{r}^{2}}}=\frac{-5}{6}$
$\frac{{{r}^{2}}+1}{r-{{r}^{2}}}=\frac{-5}{6}$
$6{{r}^{2}}+6=-5r+5{{r}^{2}}$
${{r}^{2}}+5r+6=0$
$(r+2)(r+3)=0$
$r=-2$ atau $r=-3$
${{U}_{3}}+{{U}_{1}}=-5\Leftrightarrow a{{r}^{2}}+a=-5$
$a({{r}^{2}}+1)=-5$
$a=\frac{-5}{{{r}^{2}}+1}$
Untuk $r=-2$ maka $a=\frac{-5}{{{(-2)}^{2}}+1}=-1$, maka:
${{U}_{3}}+{{U}_{4}}=a{{r}^{2}}+a{{r}^{3}}$
$=(-1).{{(-2)}^{2}}+(-1).{{(-2)}^{3}}=4$
Untuk $r=-3$ maka $a=\frac{-5}{{{(-3)}^{2}}+1}=\frac{-1}{2}$, maka:
${{U}_{3}}+{{U}_{4}}=a{{r}^{2}}+a{{r}^{3}}$
$=\frac{-1}{2}.{{(-3)}^{2}}+\frac{-1}{2}.{{(-3)}^{3}}=9$
Kunci: D
Diketahui barisan geometri dengan jumlah suku ke-1 dan ke-3 yakni 100 dan jumlah suku ke-2 dan ke-4 yakni 75, maka suku pertama barisan tersebut yakni …
A. 24 B. 27 C. 36 D. 48 E. 64
Pembahasan:
Barisan geometri: ${{U}_{n}}=a{{r}^{n-1}}$
$\frac{{{U}_{2}}+{{U}_{4}}}{{{U}_{1}}+{{U}_{3}}}=\frac{75}{100}$
$\frac{ar+a{{r}^{3}}}{a+a{{r}^{2}}}=\frac{3}{4}$
$\frac{r(a+a{{r}^{2}})}{(a+a{{r}^{2}})}=\frac{3}{4}\Leftrightarrow r=\frac{3}{4}$
${{U}_{1}}+{{U}_{3}}=100$
$a+a{{r}^{2}}=100$
$a+a{{\left( \frac{3}{4} \right)}^{2}}=100$
$a+\frac{9a}{16}=100$
$\frac{25a}{16}=100$
$a=64$
Kunci: E
Jika A memenuhi $\left[ \begin{matrix} 2 & 1 \\ 1 & 1 \\ \end{matrix} \right]A+\left[ \begin{matrix} -1 & -2 \\ 0 & -1 \\ \end{matrix} \right]=\left[ \begin{matrix} -1 & 0 \\ 1 & 1 \\ \end{matrix} \right]$, maka det(A) = …
A. 0 B. $-\frac{1}{2}$ C. $-1$ D. $-2$ E. $-3$
Pembahasan:
$\left[ \begin{matrix} 2 & 1 \\ 1 & 1 \\ \end{matrix} \right]A+\left[ \begin{matrix} -1 & -2 \\ 0 & -1 \\ \end{matrix} \right]=\left[ \begin{matrix} -1 & 0 \\ 1 & 1 \\ \end{matrix} \right]$
$\left[ \begin{matrix} 2 & 1 \\ 1 & 1 \\ \end{matrix} \right]A=\left[ \begin{matrix} -1 & 0 \\ 1 & 1 \\ \end{matrix} \right]-\left[ \begin{matrix} -1 & -2 \\ 0 & -1 \\ \end{matrix} \right]$
$\left[ \begin{matrix} 2 & 1 \\ 1 & 1 \\ \end{matrix} \right]A=\left[ \begin{matrix} 0 & 2 \\ 1 & 2 \\ \end{matrix} \right]$
$\left| \begin{matrix} 2 & 1 \\ 1 & 1 \\ \end{matrix} \right||A|=\left| \begin{matrix} 0 & 2 \\ 1 & 2 \\ \end{matrix} \right|$
$1.|A|=-2$
$|A|=-2$
Kunci: D
Mimi mendapat nilai rata-rata 6 untuk 3 kali ulangan matematika, nilai rata-rata 7 untuk 3 kali ulangan Biologi dan nilai rata-rata 8 untuk 4 kali ulangan Bahasa Inggris, dan masih ada 5 ulangan lagi dari ketiga pelajaran tersebut yang akan diikuti oleh Mimi. Agar Mimi mendapat nilai rata-rata untuk tiga mata pelajaran minimal 7,2, maka Mimi harus mendapat nilai rata-rata 5 ulangan minimal …
A. 7,2 B. 7,3 C. 7,4 D. 7,5 E. 7,6
Pembahasan:
Misalkan: p = nilai rata-rata 5 ulangan terakhir, maka:
${{n}_{1}}.{{\bar{x}}_{1}}+{{n}_{2}}.{{\bar{x}}_{2}}+{{n}_{3}}.{{\bar{x}}_{3}}+{{n}_{4}}.{{\bar{x}}_{4}}\ge ({{n}_{1}}+{{n}_{2}}+{{n}_{3}}+{{n}_{4}}).{{\bar{x}}_{Total}}$
$6.3+7.3+8.4+5.p\ge (3+3+4+5).7,2$
$18+21+32+5p\ge 15\times 7,2$
$71+5p\ge 108$
$5p\ge 108-71$
$5p\ge 37$
$p\ge 7,4$
Kunci: C
Matematika DASAR UM-UGM 2016 No. 12
Jika ${{\cos }^{2}}x=\sqrt{3}\sin x$ maka $\sin x$ = …A. $\frac{1-2\sqrt{3}}{2}$
B. $\frac{1-\sqrt{3}}{2}$
C. $\frac{2-\sqrt{3}}{2}$
D. $\frac{\sqrt{7}+\sqrt{3}}{2}$
E. $\frac{\sqrt{7}-\sqrt{3}}{2}$
Pembahasan:
${{\cos }^{2}}x=\sqrt{3}\sin x$, terlihat $\sin x$ harus positif, maka:
$1-{{\sin }^{2}}x=\sqrt{3}\sin x$
${{\sin }^{2}}x+\sqrt{3}\sin x-1=0$
Dengan rumus abc:
$\sin x=\frac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$
$\sin x=\frac{-\sqrt{3}+\sqrt{{{(\sqrt{3})}^{2}}-4.1.(-1)}}{2.1}$
$\sin x=\frac{-\sqrt{3}+\sqrt{7}}{2}=\frac{\sqrt{7}-\sqrt{3}}{2}$
Kunci: E
Matematika DASAR UM-UGM 2016 No. 13
Panitia jalan sehat akan menciptakan kupon bernomor yang terdiri dari empat angka berbeda yang disusun dari 0, 1, 3, 5, 7. Jika angka pertama atau terakhir dihentikan nol, maka banyak kupon yang sanggup dibuat yakni …
A. 48 B. 72 C. 96 D. 108 E. 120
Pembahasan:
Jika digit terakhir dipilih angka 1, maka:
ABC1, untuk menentukan angka pada A ada 3 kemungkinan yaitu (3, 5, 7) dan untuk BC angka 0 digunakan. Diperoleh: 3 x 3 x 2 = 18 kupon.
Jika digit terakhir dipilih angka 2, maka:
ABC3, dengan cara yang sama sebelumnya diperoleh: 3 x 3 x 2 = 18 kupon.
Jika digit terakhir dipilih angka 5, maka:
ABC5, diperoleh: 3 x 3 2 = 18 kupon.
Jika digit terakhir dipilih angka 7, maka:
ABC7, diperoleh: 3 x 3 x 2 = 18 kupon.
Seluruhnya = 18 + 18 + 18 + 18 = 72 kupon.
Kunci: B
Matematika DASAR UM-UGM 2016 No. 14
Diberikan fungsi $f$ dan $g$ dengan $f(x-2)=3{{x}^{2}}-16x+26$ dan $g(x)=ax-1$. Jika $(f\circ g)(3)=61$, maka nilai $a$ yang memenuhi yakni …
A. -2 B. $\frac{8}{9}$ C. $\frac{9}{8}$ D. 2 E. 4
Pembahasan:
$f(x-2)=3{{x}^{2}}-16x+26$,
$f(x)=3{{(x+2)}^{2}}-16(x+2)+26$
$f(x)=3{{x}^{2}}-4x+6$
$(f\circ g)(3)=61$
$f(g(3))=61$
$f(3a-1)=61$
$3{{(3a-1)}^{2}}-4(3a-1)+6=61$
$3(9{{a}^{2}}-6a+1)-12a+4+6-61=0$
$27{{a}^{2}}-18a+3-12a-51=0$
$27{{a}^{2}}-30a-48=0$
$9{{a}^{2}}-10a-16=0$
$(9a+8)(a-2)=0$
$a=-\frac{8}{9}$ atau $a=2$
Kunci: D
Matematika DASAR UM-UGM 2016 No. 15
Jika $\underset{x\to {-1}}{\mathop{\lim }}\,\frac{{{x}^{2}}+ax+b}{{{x}^{2}}+3x+2}=-4$, maka nilai $a+b$ yakni …
A. -1 B. -2 C. -3 D. -4 E. -5
Pembahasan:
$\underset{x\to {-1}}{\mathop{\lim }}\,\frac{{{x}^{2}}+ax+b}{{{x}^{2}}+3x+2}=-4$
$x=-1\Rightarrow {{x}^{2}}+ax+b=0$
${{(-1)}^{2}}+a(-1)+b=0$
$b=a-1$
$\underset{x\to {-1}}{\mathop{\lim }}\,\frac{{{x}^{2}}+ax+b}{{{x}^{2}}+3x+2}=-4$ dengan hukum L’Hopital.
$\underset{x\to {-1}}{\mathop{\lim }}\,\frac{2x+a}{2x+3}=-4$
$\frac{2(-1)+a}{2(-1)+3}=-4$
$a-2=-4$
$a=-2$
$b=a-1=-2-1\Leftrightarrow b=-3$
$a+b=-2+(-3)=-5$
Kunci: E
Matematika Dasar UM-UGM 2016 No. 16
Garis lurus yang menyinggung kurva $y=\sqrt[3]{6-x}$ di titik $x=-2$ akan memotong sumbu X di titik …
A. (18,0) B. (19,0) C. (20,0) D. (21,0) E. (22,0)
Pembahasan:
$x=-2$, maka:
$y=\sqrt[3]{6-x}\Leftrightarrow y=\sqrt[3]{6-(-2)}=2$
Titik singgung (-2,2)
$y=\sqrt[3]{6-x}$
$y={{(6-x)}^{\frac{1}{3}}}$
$\frac{dy}{dx}=\frac{1}{3}{{(6-x)}^{\frac{1}{3}-1}}.(-1)$
$\frac{dy}{dx}=\frac{-1}{3}{{(6-x)}^{-\frac{2}{3}}}$
$\frac{dy}{dx}=\frac{-1}{3\sqrt[3]{{{(6-x)}^{2}}}}$
$m={{\left. \frac{dy}{dx} \right|}_{x=-2}}$
$=\frac{-1}{3\sqrt[3]{{{(6-(-2))}^{2}}}}$
$=\frac{-1}{3{{\left( \sqrt[3]{8} \right)}^{2}}}$
$m=\frac{-1}{12}$
Persamaan garis singgung melalui titik (-2,2) dan $m=\frac{-1}{12}$ adalah:
$y-{{y}_{1}}=m(x-{{x}_{1}})$
$y-2=-\frac{1}{12}(x+2)$
Memotong sumbu X, maka y = 0,
$0-2=-\frac{1}{12}(x+2)$
$24=x+2\Leftrightarrow 22=x$
Jadi, garis memotong sumbu X di titik (22,0).
Kunci: E
Matematika Dasar UM-UGM 2016 No. 17
Luas minimum segitiga yang sanggup dibuat oleh garis lurus yang melalui titik (4,3) dengan sumbu-sumbu ordinat yakni …
A. 12 B. 16 C. 20 D. 24 E. 26
Pembahasan:
Asumsikan garis memotong sumbu Y ditik (0,a) dan memotong sumbu X di titik (b,0), diperoleh persamaan garis: ax + by = ab melalui titik (4,3) maka:
$4a+3b=ab$
$4a=b(a-3)$
$\frac{4a}{a-3}=b$
Luas segitiga adalah:
$L=\frac{1}{2}a.\frac{4a}{a-3}$
$L=\frac{2{{a}^{2}}}{a-3}$
$L'=0$
$\frac{4a(a-3)-1.2{{a}^{2}}}{{{(a-3)}^{2}}}=0$
$\frac{2{{a}^{2}}-12a}{{{(a-3)}^{2}}}=0$
$2{{a}^{2}}-12a=0$
$2a(a-6)=0$
$a=0$ (TM) atau $a=6$ (Memenuhi)
$L=\frac{2{{a}^{2}}}{a-3}=\frac{{{2.6}^{2}}}{6-3}=24$
Kunci: D
Matematika Dasar UM-UGM 2016 No. 18
Semua nilai $x$ yang memenuhi pertidaksamaan:
$\left( {}^{2}\log (x+6) \right)\left( {}^{({{x}^{2}}-3)}\log 8 \right)+{}^{({{x}^{2}}-3)}\log 8 > 3$
Berada pada …
A. $-3 < x < -2$ atau $2 < x < 5$
B. $-5 < x < -2$ atau $2 < x < 3$
C. $-3 < x < -\sqrt35$ atau $\sqrt3 < x < 5
D. $x < -2$ atau $x > 2$
E. $2 < x < 5$
Pembahasan:
Syarat:
(i) $x+6 > 0\Leftrightarrow x > -6$
(ii) $0 < {{x}^{2}}-3 < 1$
$3 < {{x}^{2}} < 4$
$-2 < x < -\sqrt{3}$ atau $\sqrt{3} < x < 2$
Atau ${{x}^{2}}-3 > 1$
${{x}^{2}}-4 > 0$
$(x+2)(x-2) > 0$
$x < -2$ atau $x > 2$
Dari pertidaksamaan:
$\left( {}^{2}\log (x+6) \right)\left( {}^{({{x}^{2}}-3)}\log 8 \right)+{}^{({{x}^{2}}-3)}\log 8 > 3$
${}^{({{x}^{2}}-3)}\log 8.\left( {}^{2}\log (x+6)+1 \right) > 3$
${}^{({{x}^{2}}-3)}\log {{2}^{3}}.\left( {}^{2}\log (x+6)+{}^{2}\log 2 \right) > 3$
$3.{}^{({{x}^{2}}-3)}\log 2.{}^{2}\log (2x+12) > 3$
${}^{({{x}^{2}}-3)}\log (2x+12) > 1$
Jika ${{x}^{2}}-3 > 1$, maka:
${}^{({{x}^{2}}-3)}\log (2x+12) > 1$
$2x+12 > {{x}^{2}}-3$
$0 > {{x}^{2}}-3-12-2x$
${{x}^{2}}-2x-15 < 0$
$(x+3)(x-5) < 0$
$-3 < x < 5$
Irisan dari $x < -2$ atau $x > 2$ dan $-3 < x < 5$ yakni $-3 < x < -2$ atau $2 < x < 5$
Kunci: A
Matematika Dasar UM-UGM 2016 No. 19
Titik ${{P}_{1}}({{x}_{1}},{{y}_{1}})$, ${{P}_{2}}({{x}_{2}},{{y}_{2}})$, …, ${{P}_{10}}({{x}_{10}},{{y}_{10}})$ dilalui oleh garis $g$ yang memiliki persamaan $y+2x-3=0$. Bilangan-bilangan ${{x}_{1}}$, ${{x}_{2}}$, …, ${{x}_{10}}$ membentuk barisan aritmetika. Jika ${{x}_{10}}$ = 2 dan ${{y}_{5}}$ = 7, maka ${{y}_{7}}$ = …
A. $\frac{19}{5}$ B. $\frac{17}{5}$ C. $\frac{15}{5}$ D. $\frac{13}{5}$ E. $\frac{11}{5}$
Pembahasan:
Garis $y+2x-3=0\Leftrightarrow y=3-2x$ melalui titik ${{P}_{1}}({{x}_{1}},{{y}_{1}})$, ${{P}_{2}}({{x}_{2}},{{y}_{2}})$, …, ${{P}_{10}}({{x}_{10}},{{y}_{10}})$, maka berlaku:
${{y}_{i}}=3-2{{x}_{i}}$ dengan $i$ = 1, 2, 3, .., 10.
Barisan aritmetika: ${{x}_{1}}$, ${{x}_{2}}$, …, ${{x}_{10}}$, maka:
${{x}_{10}}={{x}_{5}}+5b$
$2={{x}_{5}}+5b\Leftrightarrow 2-5b={{x}_{5}}$
${{y}_{i}}=3-2{{x}_{i}}$
${{y}_{5}}=3-2{{x}_{5}}$
$7=3-2(2-5b)$
$7=3-4+10b$
$8=10b\Leftrightarrow \frac{8}{10}=b=\frac{4}{5}$
${{x}_{10}}={{x}_{7}}+3b$
$2={{x}_{7}}+3.\frac{4}{5}\Leftrightarrow 2-\frac{12}{5}={{x}_{7}}=\frac{-2}{5}$
${{y}_{i}}=3-2{{x}_{i}}$
${{y}_{7}}=3-2{{x}_{7}}$
${{y}_{7}}=3-2.\frac{-2}{5}=\frac{19}{5}$
Kunci: A
Matematika Dasar UM-UGM 2016 No. 20
Jika $x$ dan $y$ memenuhi ${}^{2}\log {{x}^{2}}+{}^{3}\log \frac{1}{{{y}^{3}}}=4$ dan ${}^{2}\log x+{}^{3}\log {{y}^{4}}=13$, maka ${}^{4}\log x-{}^{y}\log 9$ = …
A. -2 B. -1 C. 1/2 D. 1 E. 3/2
Pembahasan:
${}^{2}\log {{x}^{2}}+{}^{3}\log \frac{1}{{{y}^{3}}}=4$
${}^{2}\log {{x}^{2}}+{}^{3}\log {{y}^{-3}}=4$
$2.{}^{2}\log x-3.{}^{3}\log y=4$ … (1)
${}^{2}\log x+{}^{3}\log {{y}^{4}}=13$
${}^{2}\log x+4.{}^{3}\log y=13$ … (2) kali 2
$2.{}^{2}\log x+8.{}^{3}\log y=26$
$2.{}^{2}\log x-3.{}^{3}\log y=4$
------------------------------- (-)
$11.{}^{3}\log y=22$
${}^{3}\log y=2\Leftrightarrow y={{3}^{2}}$
${}^{2}\log x+4.{}^{3}\log y=13$
${}^{2}\log x+4.{}^{3}\log {{3}^{2}}=13$
${}^{2}\log x+8=13$
${}^{2}\log x=5\Leftrightarrow x={{2}^{5}}$
${}^{4}\log x-{}^{y}\log 9={}^{{{2}^{2}}}\log {{2}^{5}}-{}^{9}\log 9$
$=\frac{5}{2}-1=\frac{3}{2}$
Kunci: E
0 Response to "Pembahasan Matematika Dasar Um-Ugm 2016 Instruksi 371"
Post a Comment