Hari ini aku coba menyebarkan Soal dan Pembahasan Matematika Dasar (MATDAS). Soal yang akan dibahas kali ini yakni soal matematika dasar SBMPTN tahun 2011 arahan 171. Sekadar mengingatkan bahwa apa yang aku share ini hanya sebagai catatan aku sebagai seorang guru yang CINTA terhadap MATEMATIKA. Cinta aku kepada matematika lebih besar dibandingkan kemampuan aku untuk memahami dan mengerti matematika itu sendiri, untuk itu aku senantiasa berusaha memahaminya secara perlahan namun pasti. Langsung saja berikut ini aku persembahkan catatan kecil saya.
Eits.... tunggu dulu. Buat adik-adik pejuang masuk Perguruan Tinggi Negeri (Perguruan Tinggi Negeri) alangkah baiknya sebelum melihat pembahasan ini lebih lanjut aku rekomendasikan semoga kalian download terlebih dahulu soalnya, sehabis di download silahkan dijawab secara mandiri, sehabis selesai bolehlah melirik pembahasan ini. Oh iya bapak/ibu guru baik di sekolah maupun yang memberi belajar khusus juga boleh memakai soal ini sebagai materi belajar.
Matematika Dasar SBMPTN 2011 No. 1
Jika $6({{3}^{40}})({}^{2}\log a)+{{3}^{41}}({}^{2}\log a)={{3}^{43}}$, maka nilai a yakni …
A. $\frac{1}{8}$ B. $\frac{1}{4}$ C. 4 D. 8 E. 16
Pembahasan:
$6({{3}^{40}})({}^{2}\log a)+{{3}^{41}}({}^{2}\log a)={{3}^{43}}$
${{2.3.3}^{40}}.{}^{2}\log a+{{3}^{41}}.{}^{2}\log a={{3}^{43}}$
${{2.3}^{41}}.{}^{2}\log a+{{3}^{41}}.{}^{2}\log a={{3}^{43}}$
$(2+1){{3}^{41}}.{}^{2}\log a={{3}^{43}}$
${{3.3}^{41}}.{}^{2}\log a={{3}^{43}}$
${{3}^{42}}.{}^{2}\log a={{3}^{43}}$
${}^{2}\log a=\frac{{{3}^{43}}}{{{3}^{42}}}$
${}^{2}\log a=3$
$a={{2}^{3}}=8$
Jawaban: D
Matematika Dasar SBMPTN 2011 No. 2
Jika 2 yakni satu-satunya akar persamaan kuadrat $\frac{1}{4}{{x}^{2}}+bx+a=0$, maka nilai $a+b$ yakni …
A. 32 B. 2 C. 0 D. -2 E. -32
Pembahasan:
$\frac{1}{4}{{x}^{2}}+bx+a=0$, ${{x}_{1}}={{x}_{2}}=2$ maka:
$\frac{1}{4}{{.2}^{2}}+b.2+a=0$
$a+2b=-1$
${{x}_{1}}+{{x}_{2}}=4$
$\frac{-b}{\frac{1}{4}}=4$
$-b=1\Leftrightarrow b=-1$
Substitusi ke:
$a+2b=-1$
$a+2(-1)=-1\Leftrightarrow a=1$
$a+b=1-1=0$
Jawaban: C
Matematika Dasar SBMPTN 2011 No. 3
Bangun berikut yakni suatu persegi.
Jika luas persegi A, B dan C berturut-turut yakni 16, 36, dan 9, maka luas tempat yang di arsir yakni …
A. 61 B. 80 C. 82 D. 87 E. 88
Pembahasan:
Perhatikan gambar berikut:
Luas tempat yang di arsir adalah:
${{L}_{arsir}}={{L}_{total}}-{{L}_{A}}-{{L}_{B}}-{{L}_{D}}$
${{L}_{arsir}}={{13}^{2}}-16-36-\frac{6.7}{2}$
${{L}_{arsir}}=87$
Jawaban: D
Matematika Dasar SBMPTN 2011 No. 4
Jika $\bar{p}$ yakni negasi dari $p$ maka kesimpulan dari pernyataan-pernyataan $p\Rightarrow \bar{q}$ dan $q\vee \bar{r}$ yakni …
A. $r\vee p$
B. $r\wedge p$
C. $\bar{p}\vee \bar{r}$
D. $r\vee \bar{q}$
E. $\bar{q}\Rightarrow p$
Pembahasan:
$p\Rightarrow \bar{q}$ dan $q\vee \bar{r}$
$q\vee \bar{r}$ ekuivalen dengan $\bar{q}\Rightarrow \bar{r}$
Silogisme:
P1: $p\Rightarrow \bar{q}$
P2: $\bar{q}\Rightarrow \bar{r}$
K: $p\Rightarrow \bar{r}$ ekuivalen dengan $\bar{p}\vee \bar{r}$
Jawaban: C
Matematika Dasar SBMPTN 2011 No. 1
Jika $6({{3}^{40}})({}^{2}\log a)+{{3}^{41}}({}^{2}\log a)={{3}^{43}}$, maka nilai a yakni …
A. $\frac{1}{8}$ B. $\frac{1}{4}$ C. 4 D. 8 E. 16
Pembahasan:
$6({{3}^{40}})({}^{2}\log a)+{{3}^{41}}({}^{2}\log a)={{3}^{43}}$
${{2.3.3}^{40}}.{}^{2}\log a+{{3}^{41}}.{}^{2}\log a={{3}^{43}}$
${{2.3}^{41}}.{}^{2}\log a+{{3}^{41}}.{}^{2}\log a={{3}^{43}}$
$(2+1){{3}^{41}}.{}^{2}\log a={{3}^{43}}$
${{3.3}^{41}}.{}^{2}\log a={{3}^{43}}$
${{3}^{42}}.{}^{2}\log a={{3}^{43}}$
${}^{2}\log a=\frac{{{3}^{43}}}{{{3}^{42}}}$
${}^{2}\log a=3$
$a={{2}^{3}}=8$
Jawaban: D
Matematika Dasar SBMPTN 2011 No. 2
Jika 2 yakni satu-satunya akar persamaan kuadrat $\frac{1}{4}{{x}^{2}}+bx+a=0$, maka nilai $a+b$ yakni …
A. 32 B. 2 C. 0 D. -2 E. -32
Pembahasan:
$\frac{1}{4}{{x}^{2}}+bx+a=0$, ${{x}_{1}}={{x}_{2}}=2$ maka:
$\frac{1}{4}{{.2}^{2}}+b.2+a=0$
$a+2b=-1$
${{x}_{1}}+{{x}_{2}}=4$
$\frac{-b}{\frac{1}{4}}=4$
$-b=1\Leftrightarrow b=-1$
Substitusi ke:
$a+2b=-1$
$a+2(-1)=-1\Leftrightarrow a=1$
$a+b=1-1=0$
Jawaban: C
Matematika Dasar SBMPTN 2011 No. 3
Bangun berikut yakni suatu persegi.
Jika luas persegi A, B dan C berturut-turut yakni 16, 36, dan 9, maka luas tempat yang di arsir yakni …
A. 61 B. 80 C. 82 D. 87 E. 88
Pembahasan:
Perhatikan gambar berikut:
Luas tempat yang di arsir adalah:
${{L}_{arsir}}={{L}_{total}}-{{L}_{A}}-{{L}_{B}}-{{L}_{D}}$
${{L}_{arsir}}={{13}^{2}}-16-36-\frac{6.7}{2}$
${{L}_{arsir}}=87$
Jawaban: D
Matematika Dasar SBMPTN 2011 No. 4
Jika $\bar{p}$ yakni negasi dari $p$ maka kesimpulan dari pernyataan-pernyataan $p\Rightarrow \bar{q}$ dan $q\vee \bar{r}$ yakni …
A. $r\vee p$
B. $r\wedge p$
C. $\bar{p}\vee \bar{r}$
D. $r\vee \bar{q}$
E. $\bar{q}\Rightarrow p$
Pembahasan:
$p\Rightarrow \bar{q}$ dan $q\vee \bar{r}$
$q\vee \bar{r}$ ekuivalen dengan $\bar{q}\Rightarrow \bar{r}$
Silogisme:
P1: $p\Rightarrow \bar{q}$
P2: $\bar{q}\Rightarrow \bar{r}$
K: $p\Rightarrow \bar{r}$ ekuivalen dengan $\bar{p}\vee \bar{r}$
Jawaban: C
Matematika Dasar SBMPTN 2011 No. 5
Jika grafik fungsi kuadrat $f(x)=a{{x}^{2}}+bx+c$ dengan puncak $(5,-4)$ memotong sumbu X positif dan sumbu X negatif, maka …
A. $a-c > 0$
B. $a+c < 0$
C. $a+c = 0$
D. $a+c > 0$
E. $a-c < 0$
Pembahasan:
Jika grafik fungsi kuadrat $f(x)=a{{x}^{2}}+bx+c$ dengan puncak $(5,-4)$ memotong sumbu X positif dan sumbu X negatif, maka …
A. $a-c > 0$
B. $a+c < 0$
C. $a+c = 0$
D. $a+c > 0$
E. $a-c < 0$
Pembahasan:
Kurva terbuka ke bawah maka a > 0
Kurva memotong sumbu Y negatif, maka c < 0
sehingga a – c > 0
Jawaban: A
Matematika Dasar SBMPTN 2011 No. 6
Semua nilai $x$ yang memenuhi $\frac{{{x}^{2}}-x+3}{(2{{x}^{2}}-5x-3)({{x}^{2}}+1)}\le 0$ yakni …
A. $-\frac{1}{2} < x < 3$
B. $-3\le x < \frac{1}{2}$
C. $x\le -\frac{1}{2}$ atau $x\ge 3$
D. $x < -\frac{1}{2}$ atau $x > 3$
E. $x < -3$ atau $x\ge \frac{1}{2}$
Pembahasan:
${{x}^{2}}-x+3 > 0$, alasannya yakni Definit positif a > 0 dan D < 0)
${{x}^{2}}+3 > 0$, alasannya yakni Definit positif a > 0 dan D < 0)
Akibatnya,
$\frac{{{x}^{2}}-x+3}{(2{{x}^{2}}-5x-3)({{x}^{2}}+1)}\le 0$
Karena pembilang positif maka penyebutnya haruslah negatif supaya memenuhi pertidaksamaan tersebut, yaitu:
$2{{x}^{2}}-5x-3 < 0$
$(2x+1)(x-3) < 0$
pembuat nol:
$x=-\frac{1}{2}$ dan $x = 3$, maka:
$-\frac{1}{2} < x < 3$
Jawaban: A
Matematika Dasar SBMPTN 2011 No. 7
Sistem persamaan linier $\left\{ \begin{matrix} x+y=3 \\ -x+3y=1 \\ ax+4by=4 \\ \end{matrix} \right.$ memiliki penyelesaian, jikalau nilai $a+2b$ yakni …
A. 4 B. 2 C. -1 D. 0 E. -2
Penyelesaian:
$\begin{align} & x+y=3 \\ & -x+3y=1 \end{align}$
-------------- +
4y = 4
y = 1 dan x = 2
sehingga titik (2,1) dilalui oleh garis:
ax + 4by = 4
2a + 4b = 4
a + 2b = 2
Jawaban: B
Matematika Dasar SBMPTN 2011 No. 8
Nilai ${{\cos }^{2}}({{30}^{o}})+{{\cos }^{2}}({{40}^{o}})+{{\cos }^{2}}({{50}^{o}})+{{\cos }^{2}}({{60}^{o}})$ yakni ….
A. 2 B. $\frac{3}{2}$ C. 1 D. $\frac{1}{2}$ E. 0
Pembahasan:
${{\cos }^{2}}({{30}^{o}})+{{\cos }^{2}}({{40}^{o}})+{{\cos }^{2}}({{50}^{o}})+{{\cos }^{2}}({{60}^{o}})$
$={{\cos }^{2}}({{90}^{o}}-{{60}^{o}})+{{\cos }^{2}}({{90}^{o}}-{{40}^{o}})+{{\cos }^{2}}{{50}^{o}}+{{\cos }^{2}}{{60}^{o}}$
$={{\sin }^{2}}{{60}^{o}}+{{\sin }^{2}}{{50}^{o}}+{{\cos }^{2}}{{50}^{o}}+{{\cos }^{2}}{{60}^{o}}$
$={{\sin }^{2}}{{60}^{o}}+{{\cos }^{2}}{{60}^{o}}+{{\sin }^{2}}{{50}^{o}}+{{\cos }^{2}}{{50}^{o}}$
$=1+1=2$
Jawaban: A
Matematika Dasar SBMPTN 2011 No. 9
Diagram berikut menunjukkan persentase kelulusan siswa tiga sekolah selama empat tahun.
Berdasarkan diagram di samping, pernyataan berikut yang benar yakni …
A. rata-rata persentase kelulusan sekolah B terbaik.
B. persentase kelulusan sekolah B selalu berada di posisi kedua.
C. persentase kelulusan sekolah B selalu lebih baik daripada sekolah A.
D. persentase kelulusan sekolah C selalu lebih baik daripada sekolah B.
E. persentase kelulusan sekolah B selalu lebih baik daripada tahun sebelumnya.
Pembahasan:
Untuk kelas B: persentase kelulusan tahun ke-4 > tahun ke-3 > tahun ke-2 > tahun ke-1
Jawaban: E
Matematika Dasar SBMPTN 2011 No. 10
Jika $f(x)=x+2$ dan $g(x)=\frac{x}{x+5}$, maka nilai $({{g}^{-1}}of)(4)$ yakni …
A. -8 B. -6 C. -2 D. 4 E. 6
Pembahasan:
Misal:
$({{g}^{-1}}of)(4)=a=?$
$({{g}^{-1}}of)(4)={{g}^{-1}}(f(4))$
$a={{g}^{-1}}(4+2)$
$a={{g}^{-1}}(6)$
$g(a)=6$
$\frac{a}{a+5}=6$
$a=6a+30\Leftrightarrow -5a=30\Leftrightarrow a=-6$
Jawaban: B
Matematika Dasar SBMPTN 2011 No. 11
Fungsi $f(x,y)=cx+4y$ dengan hambatan $2x+y\ge 10$, $x+2y\ge 8$, $x\ge 0$, dan $y\ge 0$ mencapai minimum di (4,2) jikalau …
A. $c\le -8$ atau $c\ge -2$
B. $c\le 2$ atau $c\ge 8$
C. $-2\le x\le 8$
D. $2\le x\le 8$
E. $2\le c\le 10$
Pembahasan:
$2x+y\ge 10\Rightarrow {{m}_{1}}=-2$
$x+2y\ge 8\Rightarrow {{m}_{2}}=-\frac{1}{2}$
$f(x,y)=cx+4y\Rightarrow {{m}_{f}}=-\frac{c}{4}$
Agar nilai minimum ada di titik potong (4,2), maka:
${{m}_{1}}\le {{m}_{f}}\le {{m}_{2}}$
$-2\le -\frac{c}{4}\le -\frac{1}{2}$
$8\ge c\ge 2\Leftrightarrow 2\le c\le 8$
Jawaban: D
Matematika Dasar SBMPTN 2011 No. 12
Jika A yakni matriks $2\times 2$ yang memenuhi $A\left( \begin{matrix} 2 \\ 1 \\ \end{matrix} \right)=\left( \begin{matrix} 1 \\ 0 \\ \end{matrix} \right)$ dan $A\left( \begin{matrix} 4 \\ 6 \\ \end{matrix} \right)=\left( \begin{matrix} 0 \\ 2 \\ \end{matrix} \right)$, maka hasil kali $A\left( \begin{matrix} 4 & 2 \\ 2 & 3 \\ \end{matrix} \right)$ yakni …A. $\left( \begin{matrix} 1 & 0 \\ 0 & 2 \\ \end{matrix} \right)$
B. $\left( \begin{matrix} 2 & 0 \\ 0 & 2 \\ \end{matrix} \right)$
C. $\left( \begin{matrix} 2 & 0 \\ 0 & 1 \\ \end{matrix} \right)$
D. $\left( \begin{matrix} 0 & 1 \\ 2 & 0 \\ \end{matrix} \right)$
E. $\left( \begin{matrix} 0 & 2 \\ 1 & 0 \\ \end{matrix} \right)$
Pembahasan:
$A\left( \begin{matrix} 2 \\ 1 \\ \end{matrix} \right)=\left( \begin{matrix} 1 \\ 0 \\ \end{matrix} \right)\Rightarrow A\left( \begin{matrix} 4 \\ 2 \\ \end{matrix} \right)=\left( \begin{matrix} 2 \\ 0 \\ \end{matrix} \right)$
$A\left( \begin{matrix} 4 \\ 6 \\ \end{matrix} \right)=\left( \begin{matrix} 0 \\ 2 \\ \end{matrix} \right)\Rightarrow A\left( \begin{matrix} 2 \\ 3 \\ \end{matrix} \right)=\left( \begin{matrix} 0 \\ 1 \\ \end{matrix} \right)$
Digabungkan menjadi:
$A\left( \begin{matrix} 4 & 2 \\ 2 & 3 \\ \end{matrix} \right)=\left( \begin{matrix} 2 & 0 \\ 0 & 1 \\ \end{matrix} \right)$
Jawaban: C
Matematika Dasar SBMPTN 2011 No. 13
Tiga bilangan lingkaran positif membentuk barisan aritmetika dengan beda 16. Jika bilangan yang terkecil ditambah 7 dan bilangan yang terbesar ditambah 2, maka diperoleh barisan geometri. Jumlah ketiga bilangan tersebut yakni …
A. 56 B. 54 C. 52 D. 50 E. 48
Pembahasan:
Deret Aritmetika (DA):
a, a + 16, a + 32
Deret Geometri:
a + 7, a + 16, a + 34
$\frac{{{U}_{2}}}{{{U}_{1}}}=\frac{{{U}_{3}}}{{{U}_{2}}}$
$\frac{a+16}{a+7}=\frac{a+34}{a+16}$
${{a}^{2}}+32a+256={{a}^{2}}+41a+238$
$32a-41a=238-256$
$-9a=-18$
$a=2$
DA:
a, a + 16, a + 32
2, 18, 34
2 + 18 + 34 = 54
Jawaban: B
Matematika Dasar SBMPTN 2011 No. 14
Jika jumlah 10 suku pertama suatu deret aritmetika yakni 220 dan jumlah 2 suku berturut-turut berikutnya yakni -4, maka jumlah 2 suku pertama deret itu yakni …
A. 36 B. 40 C. 44 D. 72 E. 76
Pembahasan:
Deret Aritmetika:
${{S}_{n}}=\frac{n}{2}\left( 2a+(n-1)b \right)$
${{S}_{10}}=220$
$\frac{10}{2}\left( 2a+9b \right)=220$
$2a+9b=44$ …. (1)
Jumlah dua suku berikutnya -4, maka:
${{U}_{11}}+{{U}_{12}}=-4$
$a+10b+a+11b=-4$
$2a+21b=-4$…. (2)
$2a+9b=44$ …. (1)
------------------------- (-)
$12b=-48$
$b=-4$
$2a+9b=44\Leftrightarrow 2a+9(-4)=44\Leftrightarrow a=40$
$\begin{align} & {{U}_{1}}+{{U}_{2}}=a+(a+b) \\ & =2a+b \\ & =2.40-4 \\ & =76 \end{align}$
Jawaban: E
Matematika Dasar SBMPTN 2011 No. 15
Karyawan pada suatu perusahaan dibedakan menjadi tiga golongan. Karyawan golongan A akan memperoleh honor per bulan sebesar sepertiga dari honor karyawan B, sedangkan karyawan golongan C dibayar per bulan sebesar setengah dari honor karyawan golongan B. penghasilan karyawan golongan C selama 4 bulan akan sama dengan penghasilan karyawan golongan A selama …
A. $\frac{8}{3}$ bulan
B. 3 bulan
C. 4 bulan
D. $\frac{14}{3}$ bulan
E. 6 bulan
Pembahasan:
$A=\frac{1}{3}B\Leftrightarrow B=3A$
$C=\frac{1}{2}B\Leftrightarrow B=2C$
Sehingga:
$3A=2c\Rightarrow C=\frac{3}{2}A$ (untuk satu bulan)
Untuk 4 bulan:
$4C=4.\frac{3}{2}A\Leftrightarrow 4C=6A$
Jawaban: E
Demikianlah Soal dan Pembahasan Matematika Dasar SBMPTN 2011 ini aku persembahkan, kiranya bermanfaat bagi kita semua. Amin.
Demikianlah Soal dan Pembahasan Matematika Dasar SBMPTN 2011 ini aku persembahkan, kiranya bermanfaat bagi kita semua. Amin.
0 Response to "Matematika Dasar Snmptn/Sbmptn 2011 Instruksi 171 [Soal + Pembahasan]"
Post a Comment