Berikut ini pembahasan Olimpiade Sains Matematika (OSN) Matematika Sekolah Menengan Atas Tahun 2017 Tingkat kabupaten/kota No 9.
     Soal No 9:
  Misalkan $a,b,c$ bilangan real nyata yang memenuhi $a+b+c=1$. Nilai minimum dari $\frac{a+b}{abc}$ yaitu ....
  Pembahasan:
  $a+b+c=1\Rightarrow a+b=1-c$
  $\begin{align*}\frac{a+b}{abc}&=\frac{a}{abc}+\frac{b}{abc}\\&=\frac{1}{bc}+\frac{1}{ac}\end{align*}$
  dengan memakai ketaksamaan SC engel, (pelajari bahan CS engel di sini)
  $\begin{align*}\frac{1}{bc}+\frac{1}{ac}&\geq \frac{(1+1)^2}{bc+ac}\\&\geq \frac{2^2}{c(a+b)}\\&\geq\frac{4}{c(1-c)}\\&\geq\frac{4}{c-c^2}\end{align*}$
  Bentuk $\frac{4}{c-c^2}$ akan minimum ketika penyebutnya maksimum.
  dengan memakai turunan, kita akan memilih nilai maksimum dari $c-c^2$
  $\begin{align*}\text{turunan pertama}&=0\\1-2c&=0\\c&=\frac{1}{2}\end{align*}$
  $\begin{align*}\frac{a+b}{abc}&\geq\frac{4}{c-c^2}\\&\geq\frac{4}{\frac{1}{2}-\left(\frac{1}{2}\right)^2}\\&\geq\frac{4}{\frac{1}{4}}\\&\geq 16\end{align*}$
  Jadi nilai minimum dari bentuk $\frac{a+b}{abc}$ dengan $a+b+c=1$ yaitu $16$
 
0 Response to "Pembahasan Osk Matematika Sma 2017 No 9"
Post a Comment